
Markov Decision Processes (II)

EMAT31530/Nov 2020/Xiaoyang Wang

Have a look at ...

... Russell and Norvig (Ch. 17 and Ch. 21)

... Sutton and Barto. Reinforcement Learning: An Introduction. MIT press

Markov Decision Processes 2/26

https://mitpress.mit.edu/books/reinforcement-learning

Outline

This lecture continues with the discussion on complex decision making. The
objective is to present two alternatives to deal with Markov Decision Processes:

Value iteration

Policy iteration

Markov Decision Processes 3/26

Example: Stochastic Grid World

Markov Decision Processes 4/26

Value

Some remarks

R(s) is reward for being in s now: is the short term reward for being in s

U(s) is utility of the states that might follow s: U(s) captures long term
advantages from being in s

U(s) reflects what you can do from s; R(s) does not.

Value V (s) = E [U(s)]

Given π, Vπ(s) =?

Markov Decision Processes 5/26

Value

Vπ(s) =

{
0, if terminal state

Qπ(s, a)

Qπ(s, a) =
∑
s′

P(s ′|s, a)[R(s ′) + γVπ(s ′)]

Value of s given π is,

Vπ(s) =
∑
s′

P(s ′|s, a)[R(s ′) + γVπ(s ′)]

Markov Decision Processes 6/26

Bellman equations

There is a direct relationship between the value of a state and the value of its
successor states.

Bellman equations (1957)

For Vπ: Value of a state is the expectation of immediate reward plus the
discounted successor state values

Vπ(s) = E [R(s ′) + γVπ(s ′)]

Optimal policy

Given Vπ(s), we can easily determine the optimal policy

π∗(s) = arg max
π

Vπ(s)

Optimal value function is

V ∗(s) = max
π

Vπ(s)

Markov Decision Processes 7/26

Bellman equations

V ∗(s) = max
π

Vπ(s)

Bellman optimality equation

For V ∗(s): the value of a state under an optimal policy must equal the
expected utility for the best action from that state

V ∗(s) = max
a

∑
s′

P(s ′|s, a)[R(s ′) + γV ∗(s ′)]

Markov Decision Processes 8/26

Value iteration: algorithm

For n states we have n Bellman equations with n unknowns (value of states)

Value iteration is an iterative approach to solving the n equations.

Intuition

We start with arbitrary values and update them as follows

V (s)← max
a

∑
s′

P(s ′|s, a)[R(s ′) + γV (s ′)]

The algorithm converges to right and unique solution.

Markov Decision Processes 9/26

Value iteration: algorithm

Value Iteration, for estimating π ≈ π∗

Parameter: threshold θ > 0 determining accuracy of estimation (1)
Init V (s), ∀s ∈ S arbitrarily; V (terminal) = 0 (2)
Loop: (3)

∆← 0 (4)
Loop for each s ∈ S: (5)

v ← V (s) (6)
V (s)← maxa

∑
s′ P(s ′|s, a)[R(s ′) + γV (s ′)] (7)

∆← max(∆, |v − V (s)|) (8)
until ∆ < θ (9)

Output π (10)
π(s) = arg maxa

∑
s′ P(s ′|s, a)[R(s ′) + γV (s ′)] (11)

Markov Decision Processes 10/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 1 iteration

Example: For (3, 3), calculate
∑

s′ P(s ′|s, a)[R(s ′) + γV (s ′)] for each action

Up: 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 1 = 0.1

Down: 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 1 = 0.1

Right: 0.8 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 0 = 0.8

Left: 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0 = 0

Markov Decision Processes 11/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 2 iterations

Markov Decision Processes 12/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 3 iterations

Markov Decision Processes 13/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 4 iterations

Markov Decision Processes 14/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 5 iterations

Markov Decision Processes 15/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 100 iterations

Markov Decision Processes 16/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

values after 1000 iterations

Markov Decision Processes 17/26

Value iteration: example

4x3 grid world with γ = 0.9 and R(s) = 0 for nonterminal states

Markov Decision Processes 18/26

Value iteration: example

4x3 grid world with γ = 0.999 and R(s) = 0 for nonterminal states

Markov Decision Processes 19/26

Value iteration: algorithm

4x3 grid world with R(s) = −0.04 for nonterminal states

estimation accuracy θ = c · Rmax

Markov Decision Processes 20/26

Value iteration: algorithm

4x3 grid world with R(s) = −0.04 for nonterminal states

estimation accuracy θ = c · Rmax

Markov Decision Processes 20/26

Value iteration: algorithm

4x3 grid world with R(s) = −0.04 for nonterminal states

estimation accuracy θ = c · Rmax

Markov Decision Processes 20/26

Policy iteration

Idea: if one action is clearly better than all others, then the exact magnitude of
the utilities on the states involved need not be precise.

Algorithm

Policy iteration alternates two steps, beginning from some initial policy π0:

1 Policy evaluation: given a policy πi , calculate Vi = Vπi , the value of
each state if πi were to be executed.

2 Policy improvement: Calculate a new policy πi+1, using one-step
look-ahead based on Vi .

πnew = arg max
a

Qπ(s, a)

= arg max
a

∑
s′

P(s ′|s, a)[R(s ′) + γVi (s
′)]

The algorithm terminates when the policy improvement step yields no change.

Markov Decision Processes 21/26

Policy iteration: policy evaluation

Policy improvement is easy, but policy evaluation?

Policy evaluation

Bellman equation for Vπ(s)

At the ith iteration, the policy πi specifies the action πi (s) in state s:

Vπi (s) =
∑
s′

P(s ′|s, a)[R(s ′) + γVπi (s
′)]

Markov Decision Processes 22/26

Policy iteration: example

E.g. πi (1, 1) = Up, πi (1, 2) = Up, ...

The simplified Bellman equations are

Vi (1, 1) = −0.04 + 0.8Vi (1, 2) + 0.1Vi (1, 1) + 0.1Vi (2, 1),

Vi (1, 2) = −0.04 + 0.8Vi (1, 3) + 0.2Vi (1, 2),

. . .

Markov Decision Processes 23/26

Policy iteration: algorithm

Policy Iteration for estimating π ≈ π∗

Init V (s) and π(s) arbitrarily for s ∈ S
Repeat

Policy evaluation using Vπ(s) =
∑

s′ P(s ′|s, a)[R(s ′) + γVπ(s ′)]
Policy improvement using π(s)← arg maxa

∑
s′ P(s ′|s, a)[R(s ′) + γV (s ′)]

Until policy is stable
Return π

Markov Decision Processes 24/26

Policy iteration vs Value iteration

The equations are now linear: the max operator has been removed.

For n states, we have n linear equations with n unknowns, which can be solved
exactly in time O(n3) by standard linear algebra methods.

When to use Policy iteration?

For small state spaces: policy evaluation using exact solution methods is
often the most efficient approach, typically very fast and converges quickly.

For large state spaces, O(n3) time might be prohibitive. Value iteration is
preferred.

For very large state spaces: use an approximation but optimality
guarantee is lost.

Markov Decision Processes 25/26

Summary

Bellman equations

Value iteration

Policy iteration

MDPs are great, if

... we know the state transition function P(s ′|a, s)

... we know the reward function R(s)

But what if we don’t?

Reinforcement Learning

Markov Decision Processes 26/26

